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Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse
transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-
called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs.
How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and
how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that
transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic
regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous
transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce
installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The
heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is
enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for
efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic

memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin
environment for piRNA precursor synthesis and by enhancing processing of these precursors.

[Keywords: H3K9me3; epigenetics; piRNA]
Supplemental material is available for this article.
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PiRNAs serve as guides for transcriptional and post-
transcriptional repression of diverse transposable elements
in germ cells of metazoa (Aravin et al. 2007a; Ghildiyal and
Zamore 2009; Siomi et al. 2011). The sequences of the
genomic regions that give rise to piRNAs, the piRNA
clusters, define the repertoire of elements that are recog-
nized and silenced. Therefore, proper selection of RNA
molecules to be processed into mature piRNAs is critical
for generating the diverse repertoire of piRNAs that guide
effective silencing of selfish genomic elements while
preventing degradation of functional RNAs. The precursors
of other classes of small noncoding RNAs such as siRNAs
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Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.245514.114.

and miRNAs are selected based on their unique structure:
either long dsRNA or fold-back hairpins (Ghildiyal and
Zamore 2009; Kim et al. 2009). However, no similar
structural or sequence motifs have been identified in piRNA
precursors in Drosophila or mammals. Furthermore, any
sequence inserted into piRNA clusters can be efficiently
converted into mature piRNAs (Todeschini et al. 2010;
Muerdter et al. 2012), raising the question of how piRNA
precursor transcripts are selected for processing.

© 2014 Le Thomas et al. This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue
publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml).
After six months, it is available under a Creative Commons License
(Attribution-NonCommercial 4.0 International), as described at http://
creativecommons.org/licenses/by-nc/4.0/.

GENES & DEVELOPMENT 28:1667-1680 Published by Cold Spring Harbor Laboratory Press; ISSN 0890-9369/14; www.genesdev.org 1667


mailto:aaa@caltech.edu
http://www.genesdev.org/cgi/doi/10.1101/gad.245514.114
http://genesdev.cshlp.org/
http://www.cshlpress.com

Downloaded from genesdev.cshlp.org on October 9, 2014 - Published by Cold Spring Harbor Laboratory Press

Le Thomas et al.

In Drosophila, piRNAs are produced from extended (up
to 200-kb) piRNA clusters that are strongly enriched in
repetitive sequences, predominantly transposon rem-
nants. piRNA clusters are located in pericentromeric and
subtelomeric regions and are transcribed into long pre-
cursor molecules from both strands or just one strand
(Aravin et al. 2007b; Brennecke et al. 2007). Unidirectional
clusters are expressed predominantly in the somatic
follicular cells of the Drosophila ovary, while bidirectional
clusters are transcribed in germline-derived nurse cells
(Brennecke et al. 2007; Lau et al. 2009). Interestingly,
generation of piRNAs from unidirectional and bidirec-
tional piRNA clusters is under the control of different sets
of proteins (Malone et al. 2009).

Several studies suggested that piRNA clusters in Dro-
sophila possess a unique chromatin structure that might
play a role in piRNA biogenesis. Bidirectional piRNA
clusters show characteristics of heterochromatin, with the
enrichment of the repressive histone 3 Lys9 trimethylation
(H3K9me3) mark and heterochromatin protein 1 (HP1) over
clusters (Moshkovich and Lei 2010; Rangan et al. 2011).
This heterochromatic environment seems to be required
for proper expression of clusters and their processing into
piRNAs. Indeed, the deficiency in histone methyltransfer-
ase Eggless/SETDBI leads to loss of piRNAs (Rangan et al.
2011). A germline-specific homolog of HP1, Rhino, was
shown to associate with double-stranded piRNA clusters,
and Rhino deficiency also leads to loss of germline-specific
piRNAs (Klattenhoff et al. 2009). In the nucleus, Rhino
colocalizes in distinct areas with the nuclear DEAD-box
RNA helicase protein UAP56 that binds to piRNA pre-
cursors (Zhang et al. 2012).

The recent study of de Vanssay et al. (2012) showed that
a transgenic locus that generates piRNAs is able to induce
piRNA production from another homologous locus that
was originally incompetent for piRNA generation. Impor-
tantly, the study revealed that deposition of a cytoplasmic
factor from the mother, which expresses the active locus,
into the embryo is sufficient to activate piRNA genera-
tion from the recipient locus without the inheritance of
the active locus itself. The investigators proposed that the
epigenetic signal that activates piRNA biogenesis in the
next generation is a pool of piRNAs that are generated from
the active locus and inherited by the progeny. Indeed, Piwi
proteins and the associated piRNAs that are expressed in
the maternal germline during oogenesis are deposited into
the developing egg and are present in the early embryo
before the start of zygotic transcription (Harris and Mac-
donald 2001; Megosh et al. 2006; Brennecke et al. 2007).
Furthermore, maternally inherited piRNAs are essential
for effective piRNA-mediated silencing and the fertility of
the progeny (Brennecke et al. 2008). Transgenerational
inheritance of piRNAs that initiate piRNA biogenesis
from homologous genomic regions in the progeny pro-
vides an attractive solution to the specification of piRNA
precursors; however, the molecular mechanism for this
process has remained unknown.

Here we use several genetic systems to dissect re-
quirements for piRNA biogenesis. We found that the
activity of double-stranded piRNA clusters in germ cells
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is greatly enhanced by the transgenerational inheritance
of homologous piRNAs from the mothers. We show that,
in the nucleus, inherited piRNAs modify the chromatin
structure of homologous loci to recruit the Rhino/Cutoff
complex, which is essential for transcription of piRNA
precursors, while in the cytoplasm, they enhance pro-
cessing of piRNA precursors.

Results

Activity of transgenic piRNA clusters correlates
with the level of the H3K9me3 mark and the presence
of transgenerationally inherited piRNAs

To identify the features that discriminate piRNA-gener-
ating regions from other genomic loci, we searched for
examples in which the same locus is active in piRNA
generation in one Drosophila strain but inactive in
another. Two Drosophila melanogaster strains, T1 and
BX2, contain an identical number of tandem repeats of
the P-lacZ transgene inserted in the same locus in the
middle of chromosome arm 2R, a genomic position that
does not give rise to piRNAs in other strains (Dorer and
Henikoff 1997; Ronsseray et al. 2001). In the T1 strain,
the transgene gives rise to abundant piRNAs in germ
cells, and these piRNAs are able to silence expression of
another lacZ transgene in trans. In contrast, no piRNAs
are generated from the same transgene in the BX2 strain
(Fig. 1A; de Vanssay et al. 2012). As the sequence of the T1
and the BX2 transgenes is identical, the reason for their
differential ability to generate piRNAs is unknown. Re-
cent studies revealed that two chromatin factors, SETDB1
(a methyltransferase responsible for installation of the
H3K9me3 mark) and the HP1 homolog Rhino, are required
for piRNA biogenesis (Klattenhoff et al. 2009; Rangan et al.
2011). Based on this, we hypothesized that a difference in
the chromatin state of the T1 and the BX2 transgenes
explains their differential ability to produce piRNAs. To
test this, we profiled the H3K9me3 mark on the transgene
sequences in ovaries of flies from both strains using
chromatin immunoprecipitation and quantitative PCR
(ChIP-gPCR). The H3K9me3 mark was enriched by ap-
proximately fourfold over the transgene in the “active” T1
strain compared with the “inactive” BX2 strain (Fig. 1B).
To rule out the possibility that the differences in the
H3K9me3 mark between T1 and BX2 are caused by
changes in nucleosome occupancy, we performed total
H3 ChIP that showed no difference between the two
strains (Supplemental Fig. S1). This result indicates that
the ability of a genomic locus to generate piRNAs indeed
correlates with its chromatin structure and in particular
with a high level of the H3K9me3 mark.

In Drosophila, piRNAs expressed in germ cells during
oogenesis are deposited into the embryo and are impor-
tant for transposon silencing in the next generation
(Brennecke et al. 2008). It was previously found that the
BX2 locus, which is deficient in piRNA production, can
be converted into an active locus (designated as BX2*) by
exposure to maternally inherited cytoplasm carrying
piRNAs homologous to the lacZ transgene (Fig. 1A;
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measured by ChIP-qPCR on three different regions of
the lacZ sequence shown in A. Signal was normalized

A a b o ab o B H3K9me3 occupancy Figure 1. Activity of transgenic piRNA clusters
oz " lacZ _ correlates with the level of the H3K9me3 mark and
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to input and compared with signal at a control geno-
mic region (chr2R: 2336913-2337023) highly enriched
in the H3K9me3 mark. The ChIPs were performed on

LacZ-c

two independent biological samples followed by duplicate qPCRs on each sample. A two-sided t-test was used to calculate significance of
the differences (P < 0.05). (C) Conversion of the inactive BX2 locus to a piRNA-producing BX2* locus correlates with an increase in the
H3K9me3 signal, as measured by ChIP-qPCR on three different regions of the lacZ sequence. The ChIPs were performed on two
independent biological samples followed by duplicate qPCRs on each sample. A two-sided t-test was used to calculate significance (P <
0.05). (D) Paternal transmission of the T1 transgene is accompanied by a loss of H3K9me3 signal, as measured by ChIP-qPCR. The ChIPs
were performed on two independent biological samples followed by duplicate qPCRs on each sample. A two-sided t-test was used to

calculate significance (P < 0.05).

de Vanssay et al. 2012). To determine whether activation
of the BX2 locus caused by transgenerationally inherited
PiRNAs was coupled with a change in the chromatin
state of the locus, we analyzed this region for the presence
of the H3K9me3 mark before and after conversion.
Conversion of BX2 to BX2* was accompanied by an
increase in the H3K9me3 mark on the transgene (Fig.
1C). The level of the H3K9me3 mark on the activated
BX2* transgene was similar to the signal observed on the
locus in the T1 strain. Therefore, exposure of an inactive
locus to homologous piRNAs inherited from the previous
generation leads to installment of the H3K9me3 mark
and conversion of the locus to an active piRNA cluster.

The ability of the T1 and the activated BX2* loci to
generate piRNAs was reported to be stable over many
generations if the locus was inherited from the mother
(Fig. 1A; de Vanssay et al. 2012). However, the transgenic
loci lose their capacity to generate piRNAs after paternal
transmission, suggesting that the presence of piRNAs is
necessary to maintain the locus in an active state. We
measured the enrichment of the H3K9me3 mark on the T1
transgene after maternal and paternal transmission. The
paternal transmission reduced the level of the H3K9me3
mark approximately twofold, although levels were slightly
higher than those on the nonactivated BX2 locus (Fig. 1D).
Thus, lack of transgenerationally inherited piRNAs ho-
mologous to the transgene correlates with decreased levels
of the H3K9me3 mark.

Taken together, our experiments demonstrate that the
ability of a transgenic locus to generate piRNAs corre-
lates with a high level of H3K9me3 over the transgene.
Reciprocally, the high level of the H3K9me3 mark on
the locus requires the presence of transgenerationally
inherited piRNAs homologous to the locus. Specifically,
an active locus loses its high H3K9me3 signal and
becomes inactive if it is not exposed to homologous
piRNAs, whereas an inactive locus with low H3K9me3
signal acquires both a higher level of the H3K9me3
chromatin mark and the ability to generate piRNAs after
exposure to homologous piRNAs. Together, these obser-
vations suggest that piRNAs inherited from the previous
generation induce a change in the chromatin state of
homologous genomic regions in the progeny, and this
change in chromatin is required to produce piRNAs from
these regions.

Transgenerationally inherited piRNAs enhance
the ping-pong processing of piRNAs

To test whether transgenerational inheritance of piRNAs
is required for piRNA biogenesis from other loci, we used
another transgenic system that contains single-copy
unique sequences. The insertion of the P{IArBj construct
into a subtelomeric piRNA cluster in strain P1152 leads to
generation of abundant piRNAs from this transgene (Josse
et al. 2007; Muerdter et al. 2012). Importantly, piRNAs
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generated from the lacZ sequence in P1152 are able to
silence other lacZ transgenes located in euchromatic sites,
such as the P{A92} in strain BCG69, in trans (Ronsseray et al.
2003; Josse et al. 2007; de Vanssay et al. 2012).

We analyzed the generation of piRNAs from the P1152
locus in the parental strain and two reciprocal progenies of
crosses between P1152 and BC69 stocks. Maternal de-
position (MD) progeny inherit transgene-derived piRNAs
from their P1152 mothers, while genetically identical no
MD (NMD) progeny of the reciprocal cross do not inherit
piRNAs (Fig. 2A). In addition to profiling total piRNA
populations in the ovaries of each genotype, we immuno-
precipitated the PIWI, AUB, and AGO3 proteins and
defined piRNA populations associated with each protein.
As reported before (de Vanssay et al. 2012; Muerdter et al.
2012), we detected a large number of piRNAs mapping to
the P1152 transgene in the parental P1152 strain. Trans-
genic piRNAs are found in all three Piwi complexes (Fig.
2B). In contrast, practically no piRNAs were detected in
the BC69 strain. The level of piRNAs mapped to the
transgene drops twofold in the MD progeny compared
with the parental P1152 flies, reflecting the fact that only
one allele of the transgene is present in MD flies compared
with two copies in the parental P1152 strain. The level of
piRNAs decreases ~10-fold in the NMD progeny com-
pared with the genetically identical MD flies, indicating
that inherited piRNAs are essential for piRNA generation
(Fig. 2B).

One mechanism by which trangenerationally inherited
piRNAs might boost production of new piRNAs in the
progeny is processing of complementary transcripts
through the ping-pong loop. In the ping-pong loop, piRNAs
guide endonucleolytic cleavage of complementary tran-
script, leading to the generation of new piRNAs from the
cleaved product (Brennecke et al. 2007; Gunawardane
et al. 2007; Olovnikov and Kalmykova 2013). Indeed,
PiRNA clusters that are expressed in germ cells, includ-
ing the telomeric cluster containing the P1152 locus, are
transcribed from both genomic strands; therefore, trans-
generationally inherited piRNAs can target transcripts
from these regions to initiate their processing. To study
the impact of inherited piRNAs on the ping-pong pro-
cessing, we analyzed the characteristic feature of ping-
pong: the number of complementary piRNA pairs with
a 10-nucleotide (nt) overlap between their 5’ ends (so-
called ping-pong pairs). To account for different numbers
of sequences in each library, we sampled the same
number of reads from each library 1000 times and
calculated the fraction of piRNAs in ping-pong pairs. A
large number of piRNAs derived from the transgene in
the P1152 strain was generated by ping-pong processing
(Fig. 2C; Supplemental Fig. S2). In agreement with pre-
vious studies (Brennecke et al. 2007; Li et al. 2009), the
strongest ping-pong interaction was observed between
AUB and AGO3, while PIWI participation in the ping-
pong is negligible. The fraction of the ping-pong pairs in
the total piRNA population as well as in AUB/AGO3
pairs is similar in the parental P1152 strain and MD
progeny. However, the ping-pong processing dramatically
decreased in the NMD progeny: The fraction of piRNAs
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in ping-pong pairs decreases fourfold to sevenfold in the
most prominent partners, AUB and AGO3 (Fig. 2C;
Supplemental Fig. S2). This result shows that inheritance
of homologous piRNAs indeed boosts ping-pong process-
ing in the progeny.

The level of PIWI-bound piRNAs mapped to the P1152
transgene is decreased 8.3-fold in the absence of inherited
piRNAs in NMD progeny (Fig. 2B). However, analysis of
PiRNA sequences associated with PIWI showed that, in
contrast to AUB and AGO3 piRNAs, they do not form
significant ping-pong pairs (Fig. 2C; Supplemental Fig. S2),
supporting previous studies that indicate that PIWI-bound
PiRNAs are generated by another biogenesis mechanism,
so-called primary processing. Therefore, the boost in ping-
pong processing is not sufficient to explain the whole
impact of inherited piRNAs that also enhance primary
PiRNA biogenesis.

Inherited piRNAs trigger the deposition of
the H3K9me3 mark and initiation of primary piRNA
biogenesis from the same genomic sequence

We analyzed chromatin states of both source (P1152) and
target (BC69) loci in ovaries of MD and NMD progenies
(Fig. 2A). Previously, we found that the presence of piRNAs
generated from the P1152 source locus leads to an increase
in the H3K9me3 mark and a decrease in the H3K4me
mark on the BC69 target locus (Le Thomas et al. 2013). We
confirmed accumulation of the H3K9me3 mark on the
BC69 target locus and found that it occurs only in MD
progeny that inherited homologous piRNAs from their
mothers (Fig. 3A). Importantly, we also observe that, in the
absence of inherited piRNAs, in NMD progeny, the level of
H3K9me3 decreases on the P1152 source construct (Fig.
3A). These results showed that a high level of H3K9me3 on
both the source and the target loci requires transgenera-
tional piRNA inheritance.

To test whether the deposition of H3K9me3 on the BC69
target also triggers initiation of piRNA biogenesis, we
mapped piRNAs to the junction between the hsp70 and
rosy sequence segments that is specific to this construct
(Figs. 2A, 3B). As expected, no target-derived piRNAs were
found in piRNA populations from the parental P1152 and
BC69 strains. However, nine distinct sequences were
detected in the MD progeny, while none was detected in
the NMD progeny (Fig. 3B; Supplemental Fig. S3). This
result shows that the same single-copy sequence acquires
the H3K9me3 mark and becomes a source of new piRNA at
the same time. Importantly, the target-derived piRNAs were
detected in the MD progeny in the total piRNA population
(two piRNA reads) and in complex with PIWI (seven reads),
while they were absent in AUB and AGQO3. This indicates
that the new target-derived piRNAs are generated by
primary processing and not by ping-pong. Overall, our data
show that exposure to homologous piRNAs leads to an
increase in the H3K9me3 mark and initiation of primary
PiRNA biogenesis on the target locus.

In addition to piRNAs that target the lacZ sequence,
the P{IArB} transgene in the P1152 strain generates
PiRNAs that can potentially target three endogenous loci
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Figure 2. Inherited piRNAs activate the ping-pong cycle. (A) Transgenic D. melanogaster strains used for the study. The strain P1152
contains a single copy of the P{1ArB} insertion at the telomeric X-TAS piRNA cluster on the X chromosome, which generates abundant
piRNAs from both genomic strands (Josse et al. 2007; Muerdter et al. 2012). Strain BC69 contains a single copy of the P{A92/ insertion
at the euchromatic site 35B-C of chromosome 2 that does not generate piRNAs. The P{IArB} and P{A92} transgenes are identical in
sequence, except for the Adh region that is specific to the P{IArB} construct in P1152. The bars (S1, S2, T1, and T2) indicate sequences
used for ChIP-qPCR to measure the chromatin structure of the P1152 (source) and the BC69 (target) transgenes. BC69 females express
lacZ from the transgene in the ovary; however, lacZ is repressed by lacZ piRNAs generated from the P1152 transgene if both transgenes
are combined. The cross between the P1152 and BC69 strains was performed in two directions: The progeny designated as MD
inherited P1152-derived piRNAs from their mothers. In contrast, the progeny of the reciprocal cross, designated as NMD, did not
inherit these piRNAs. (B) piRNA production from the P1152 and the BC69 transgenes in the parental strains and the MD and NMD
progenies. Shown are the numbers of piRNA reads normalized to library depth (reads per million [RPM]) mapped to the P{lArB}
transgene in total RNA and in RNA purified from the PIWI and AUB complexes. Abundant piRNAs are present in the P1152 (piRNA
source) but not in the BC69 (piRNA target) parental strain. piRNA levels in the MD progeny are twofold lower than in the P1152 strain,
reflecting the heterozygous presence of the source locus in the progeny. The piRNA level is ~10-fold lower in the NMD compared with
the MD progeny in the total cellular piRNA population and in the PIWI and AUB complexes. (C) Analysis of ping-pong processing. An
equal number of piRNA reads mapped to the P{IArB/ transgene in each library was sampled 1000 times to calculate the fraction of reads
in ping-pong pairs. Shown are the mean values of the normalized fraction of piRNAs that are in ping-pong pairs; the distributions of
values from the 1000-times sampling are shown in box plots in Supplemental Fig. S1. Both the P1152 parental strain and the MD
progeny have a high level of AUB- and AGO3-bound piRNAs generated by ping-pong processing. The fraction of piRNA generated by
ping-pong processing drops fourfold to sevenfold in NMD progeny. PIWI-bound piRNAs are generated by a primary biogenesis
mechanism and, accordingly, do not have a strong ping-pong signature.

activates primary piRNA biogenesis at previously naive
genomic loci (Fig. 3D).

in the Drosophila genome, Adh, hsp70, and rosy. We
tested whether exposure to homologous piRNAs initiated
piRNA biogenesis at these genomic regions. Few piRNAs
are generated from Adh, hsp70, and rosy loci in NMD

progeny. In contrast, abundant piRNAs are generated The H3K9me3 mark on piRNA clusters is recognized

from endogenous Adh and hsp70 sequences that flank
the region targeted by transgene-derived piRNAs in MD
progeny (Fig. 3C; data not shown). Importantly, the Adh
sequences that generate piRNAs in MD flies are not
directly targeted by transgene-derived piRNAs. This
eliminates ping-pong processing initiated by transgene-
derived piRNAs as a possible mechanism for biogenesis
of piRNAs from the endogenous Adh locus. Instead, this
result indicates that exposure to inherited piRNAs

by the HP1 homolog Rhino

One possible reader of the H3K9me3 mark on piRNA
cluster chromatin is Rhino, a germline-specific HP1 ho-
molog that was previously shown to be enriched on
double-stranded piRNA clusters and required for piRNA
biogenesis (Klattenhoff et al. 2009). Rhino harbors a con-
served chromodomain predicted to recognize methylated
lysine residues (Supplemental Fig. S4). To get insights into
the genome-wide distribution of Rhino on chromatin, we
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Figure 3. Inherited piRNAs activate piRNA biogenesis on target loci. (A) Repression of the BC69 target transgene by P1152 correlates
with a twofold higher H3K9me3 signal in the MD progeny compared with the NMD progeny, as measured by ChIP-qPCR. The H3K9me3
mark also decreases at the P1152 locus in the NMD progeny, where cognate piRNAs are not inherited. Therefore, maternally deposited
PpiRNAs are necessary to install the H3K9me3 mark on the piRNA target (BC69) and maintain the high level of the mark on the source of
piRNAs (P1152). For this experiment, MD progeny was obtained by crossing P1152; BC69 females to wild-type males, and NMD progeny
was obtained from the reciprocal cross. Signal was normalized to input and compared with signal at a control genomic region (chr2R:
2336913-2337023) highly enriched in the H3K9me3 mark. No H3K9me3 change was observed on the rp49 gene and the 42AB piRNA
cluster. The ChIPs were performed on two independent biological samples followed by triplicate qPCRs on each sample. P-values were
calculated with a two-sided t-test. (*)P < 0.05. (B) Primary piRNA processing is initiated on the BC69 target after exposure to homologous
piRNAs in the MD progenies. Shown are piRNA sequences that mapped specifically to the BC69 target locus and not to P1152 (the
junction between the hsp70 segment and the rosy segment, which is present in BC69 but not in P1152). Out of nine distinct piRNAs, two
were detected in the total cellular piRNA library, and seven were detected in the Piwi-bound population in the MD progeny. None was
detected in the parental strains or in the NMD progeny. BC69-derived piRNAs were also absent in the AUB and AGO3 complexes in the
MD progeny, indicating that the target-derived piRNAs were generated by primary processing and not by ping-pong. The density of BC69
target-derived piRNAs in MD progeny seems to be ~10-fold lower than that of P1152-derived piRNAs. (C) piRNAs are produced from the
endogenous Adh locus targeted by the transgenic P1152 piRNAs in the MD progeny. The region targeted by the transgenic P1152 piRNAs
is indicated by a blue bar. Shown are only piRNAs that uniquely mapped to the endogenous Adh locus. (D) Exposure to homologous
piRNAs triggers piRNA generation from previously naive loci. Note that piRNAs are generated from the regions that are not directly
targeted by transgenic P1152 piRNA, indicating the spreading around the originally targeted sequence.

performed ChIP combined with deep sequencing (ChIP-
seq) on ovaries of flies that expressed a BioTAP-tagged
Rhino protein. Genome-wide analysis showed that Rhino
is enriched on the regions that have high level of H3K9me3
(Supplemental Fig. S5). Analysis of the ChIP-seq data
confirmed the previous observations of Rhino enrichment
on chromatin of double-stranded, but not single-stranded,
PiRNA clusters (Fig. 4A).

Next, we tested whether the high level of the H3K9me3
mark on the transgenic T1 locus that was induced by
transgenerationally inherited piRNAs leads to binding of
Rhino protein. ChIP-gPCR showed that Rhino is enriched
on the active T1 but not the inactive BX2 locus (Fig. 4B).
Furthermore, Rhino localization on T1 chromatin is lost
together with the H3K9me3 mark after paternal trans-
mission of the locus.
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To test whether the Rhino chromodomain directly
recognizes the H3K9me3 mark, we monitored the bind-
ing affinity of the Rhino chromodomain as a function of
the methylation state of the H3(1-15)K9me peptide using
isothermal titration calorimetry (ITC). The H3K9me3
and H3K9me?2 peptides showed similar binding affinities
of 21.8 uM and 28.4 uM, respectively. In contrast, the
H3K9mel and unmodified H3 peptide showed no detect-
able binding affinity, establishing that recognition of the
H3 tail by Rhino prefers high methylation states of Lys9
(Fig. 4C).

To further investigate the molecular mechanism of
recognition of H3K9me3 by Rhino, we determined the
crystal structures of the Drosophila Rhino chromodo-
main in the free form and in complex with the H3(1-15)
K9me3 peptide at 1.5 A and 2.5 A resolution, respectively.
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matin of piRNA clusters. (A) Rhino ChIP-seq
signal is enriched at double-stranded piRNA
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The overall structure of the Rhino chromodomain (Fig.
4D) resembles that of the classic HP1 chromodomain,
which has an N-terminal three-stranded twisted B sheet
and a C-terminal short « helix, and forms a homodimer.
The Rhino-H3(1-15)K9me3 complex also adopts a dimeric
arrangement, similar to its free form (Fig. 4E; Supplemen-
tal Fig. S6A). We can trace and build the H3(1-15)K9me3
peptide from Thr3 to Ser10. The interaction between the
peptide and the Rhino chromodomain consists of specific
recognition of H3K9me3 by three conserved aromatic
residues (Phe48, Try24, and Trp45), like that observed in
the canonical recognition of H3K9me3 by the HP1 protein,
complemented by hydrogen-bonding interactions mainly
to the peptide backbone together with a few side chains
(Fig. 4F; Supplemental Fig. S6B; Jacobs and Khorasanizadeh
2002). The dimer interface in the complex is stabilized by
a network of hydrogen-bonding and hydrophobic interac-
tions (Supplemental Fig. S7). Overall, our data suggest that
the H3K9me3 mark installed on piRNA clusters in a man-
ner that depends on transgenerationally inherited piRNAs
is read by the Rhino chromodomain protein.

Rhino recruits the piRNA biogenesis factor Cutoff
and promotes efficient transcription of piRNA clusters

In the nucleus, Rhino colocalizes with Cutoff, a protein
that plays an important but not well defined role in piRNA

LacZ-b

ing depth and region length (reads per kilobase
per million [RPKM]). (B) Activity and H3K9me3
signal on the T1 and the BX2 transgenes
correlates with Rhino binding. Rhino signal on
T1 and BX2 was measured by ChIP-qPCR on
three regions of lacZ (n = 2). Signal was nor-
malized to input and compared with signal at
a control genomic region (chr2R: 2336913-
2337023). Error bars represent the standard
error of the mean between two independent
biological replicates. A two-sided t-test was
used to calculate significance (P < 0.05). (C)
Binding of Rhino chromodomain to different
methylated states of the H3(1-15)K9me pep-
tide measured by ITC. (D) Crystal structure of
D. melanogaster Rhino chromodomain in the
free state. The Rhino chromodomain forms
a homodimer with each monomer, labeled as
Mol A and Mol B. (E) Structure of the D.
melanogaster Rhino chromodomain in com-
plex with the H3(1-15)K9me3 peptide. Each
monomer contains a bound H3K9me3 pep-
tide. (F) Specific recognition of the H3K9me3
peptide by the Rhino chromodomain. Inter-
molecular hydrogen-bonding interactions are
designated by dashed red lines.

LacZ-c

biogenesis (Pane et al. 2011). Cutoff is homologous to
proteins that participate in RNA quality control and tran-
scriptional termination in yeast and mammals (Xue et al.
2000; Kim et al. 2004; Jiao et al. 2010, 2013). Localization of
Cutoff in specific nuclear foci was reported to be dependent
on Rhino protein, suggesting that Cutoff might be recruited
to chromatin through Rhino (Pane et al. 2011). We immuno-
precipitated tagged Rhino and Cutoff proteins from
Drosophila ovaries and confirmed that they form a com-
plex (Supplemental Fig. S8). Next, we used genome-wide
ChIP-seq to determine Cutoff localization on chromatin.
In agreement with previous ChIP-PCR observations (Pane
et al. 2011), we found that Cutoff localizes on double-
stranded, but not single-stranded, piRNA clusters in
perfect correlation with Rhino localization (Fig. 5A).
The Cutoff profile at the border of piRNA clusters closely
correlates with the H3K9me3 profile (Fig. 5B), suggesting
that Cutoff is recruited to piRNA cluster chromatin
through the interaction with Rhino that binds this mark.
Interestingly, enrichment of Cutoff on piRNA cluster
chromatin was abolished if, during the ChIP experiment,
the cross-linked chromatin was treated with RNase prior
to immunoprecipitation, indicating that Cutoff also in-
teracts with nascent transcripts (Supplemental Fig. S9).
We tested whether the high level of the H3K9me3 mark
and Rhino on the transgenic T1 locus leads to binding of

GENES & DEVELOPMENT 1673


http://genesdev.cshlp.org/
http://www.cshlpress.com

Downloaded from genesdev.cshlp.org on October 9, 2014 - Published by Cold Spring Harbor Laboratory Press

Le Thomas et al.

A 13 Cutoff ChiPseq B Jokb Figure 5. Rhino recruits the piRNA biogenesis
£ 511 . H3K9me3 ChiP ———  factor Cutoff to chromatin of piRNA clusters. (A)
£S5 Cutoff ChIP-seq signal is enriched at double-stranded
£S5 7 2 piRNA clusters. No enrichment is seen on uni-
§§ 5 uni- stranded g Cutoff Chip stranded flamenco and 20A clusters. Shown are

- ? D D n o8 enrichments of ChIP-seq signal relative to input.
v . .
R o & & R = Read counts are normalized to sequencing depth
PGS Ny LV e . . .
> S and region length (RPKM). (B) Cutoff is enriched on

Cs3 12 CuffChiP-gPCR o > 150 Cutoff +/- piRNA chromatin of the active T1 but not the inactive BX2
2 . BT1 maternal g or the paternally transmitted T1 transgene. Cutoff
g w1 paternal g signal on T1 and BX2 as measured by ChIP-qPCR on
£ o8 o : ; ;

g . g Liso three regions of lacZ (n = 2). Signal was normalized to

s 0'4 s PId input and compared with signal at a control genomic

2 . RepeatMasker region (chr2R: 2336913-2337023). Error bars repre-

g 02 Mappability sent the standard error of the mean between two
0 I | (] ] |

LacZ-a LacZ-b LacZ-c

the Cutoff protein. ChIP-qPCR showed that Cutoff is
more enriched on the active T1 locus compared with the
inactive BX2 locus (Fig. 5C). Furthermore, Cutoff locali-
zation on T1 chromatin is lost together with the
H3K9me3 mark and Rhino after paternal transmission.
To study the functional importance of Cutoff localiza-
tion on piRNA cluster chromatin, we profiled small and
long RNA from ovaries of cutoff mutants and control
flies. In agreement with previous observations (Pane et al.
2011), we found that piRNAs from double-stranded
PiRNA clusters are almost entirely eliminated in cutoff
mutants (Fig. 6A,B). In contrast, cutoff mutation did not
affect piRNA generation from flamenco, a unistranded
cluster that is active only in follicular cells, and from
20A, a unistranded cluster that is expressed in germ cells
but is not enriched in Rhino and Cutoff proteins. Double-
stranded piRNA clusters also give rise to a significant
fraction of the 21-nt siRNAs that are generated from
dsRNAs by Dicer (Supplemental Fig. S10; Czech et al.
2008). Importantly, siRNAs from double-stranded clus-
ters were also eliminated in the cutoff mutant (Fig. 6A,B),
indicating that the function of Cutoff is broader than just
targeting nascent transcripts to the piRNA processing
machinery. Instead, this result suggests that Cutoff is
required to generate precursor molecules for both siRNA
and piRNA processing. Indeed, RNA sequencing (RNA-
seq) of long rRNA-depleted RNA showed a decrease of
transcripts from dual-stranded clusters upon depletion of
Cutoff and Rhino (Fig. 6A,B). To study whether the
Rhino/Cutoff complex is directly involved in transcrip-
tion of piRNA precursor transcripts, we performed
nuclear run-on/global run-on sequencing (GRO-seq) ex-
periments on ovaries of control and Rhino-depleted flies.
Quantification of nascent transcripts in two independent
run-on experiments using two different methods—RT-
gPCR and deep sequencing—showed that Rhino is indeed
required for efficient transcription of dual-stranded
piRNA clusters (Fig. 6C; Supplemental Fig. S11). To-
gether, our data indicate that the H3K9me3 mark on
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technical replicates. (C) Profiles of H3K9me3, Cutoff,
and piRNAs along a fragment of the 42AB cluster
(chromosome 2R: 2129920-2181079). The Cutoff
ChIP-seq signal correlates with the H3K9me3 and
piRNA profiles and progressively increases along the
beginning of the 42AB cluster.

piRNA clusters leads to recruitment of the Rhino/Cutoff
complex, which is critical for transcription of piRNA
precursors.

Discussion

A previous study and our results reveal an essential role for
a maternally transmitted transgenerationally inherited
cytoplasmic factor in the generation of piRNAs. de Vanssay
et al. (2012) showed that a maternal factor supplied to
the progeny by females expressing piRNAs from the T1
locus activates piRNA generation from the homologous
inactive BX2 locus (Fig. 1A). Furthermore, maintaining
the activity of T1 in the subsequent generation also requires
the maternal factor. We extended this observation to other
systems and show that generation of piRNAs from a single-
copy transgene inserted into a telomeric piRNA cluster
also depends on a maternally transmitted cytoplasmic
factor (Fig. 2B). This maternal factor also activates piRNA
generation from a single-copy euchromatic sequence,
which simultaneously becomes the target of repression
and the source of new piRNAs (Figs. 2A, 3B). Finally, the
activity of endogenous clusters in D. melanogaster also
seems to require a maternally inherited factor: Our
analysis of previously published piRNA profiles in inter-
species hybrids between D. melanogaster females and
Drosophila simulans males (Kelleher et al. 2012) showed
that only D. melanogaster piRNA clusters generated
piRNAs, while D. simulans piRNA clusters were inactive
(Supplemental Fig. S12).

What is the nature of the maternally supplied epigenetic
factor that triggers piRNA generation in the progeny?
Multiple lines of evidence point to piRNAs themselves
as the carriers of this epigenetic signal. First, as initially
shown by de Vanssay et al. (2012), the epigenetic signal
produced by the T1 locus does not require inheritance of
the locus itself, indicating that the signal has a nonchro-
mosomal nature (Fig. 1A). This eliminates the possibility
that the signal is any kind of chromatin mark linked to the
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Figure 6. Transcriptional output of piRNA clusters
is decreased in the absence of Rhino and Cutoff. (A)
Profiles of Cutoff, piRNA, siRNA, and long RNA
(rRNA-minus RNA-seq) along a fragment of the
42AB cluster (chromosome 2R: 2129920-2181079).
Both piRNAs and siRNAs as well as long RNA from
the 42AB locus are almost entirely eliminated in
cutoff mutant flies. A similar decrease in long RNA
is seen in Rhino-depleted flies (shRhino). RNA-
seq signal on the left corresponds to exons of the
Pld gene. (B) The levels of piRNAs, siRNAs, and
long RNAs (rRNA-minus RNA-seq) from double-
stranded piRNA clusters are decreased in the Cutoff
mutant. Shown are fold decrease in the normalized
number of piRNA, siRNA, and long RNA reads
generated from each piRNA cluster in the ovaries
of cutoff homozygous mutant compared with
control heterozygous animals. (C) Transcriptional
output from double-stranded piRNA clusters is de-
creased upon Rhino depletion. Shown is RT-qPCR
quantification of nascent transcripts from nuclear
run-on performed on wild-type and rhino knock-
down ovaries. The experiment was performed on
two biological samples with three technical repli-
cates each; P-values were calculated with a two-
20A sided t-test. (*)P < 0.05.

N | (] S | bi-directional

active locus. Second, the process of BX2 activation genet-
ically depends on piRNA pathway genes but is indepen-
dent of Dicer, which is required for siRNA biogenesis (de
Vanssay et al. 2012). Third, both piRNAs and Piwi proteins
are inherited from the maternal germline to the early
embryos, while piRNAs are not transmitted through the
sperm (Brennecke et al. 2008). Finally, piRNAs can be
sequence-specific guides to identify and activate homolo-
gous loci. Importantly, recent studies have shown that
PiRNAs and the nuclear Piwi protein trigger installation of
the H3K9me3 mark on homologous targets, providing
a possible mechanism by which inherited piRNAs could
lead to chromatin changes (Wang and Elgin 2011; Sienski
et al. 2012; Le Thomas et al. 2013; Rozhkov et al. 2013).
Together, these results strongly support the role of
inherited piRNAs as a transgenerationally transmitted
epigenetic signal that activates piRNA generation from
homologous loci in the progeny.

How can transgenerationally inherited piRNAs activate
piRNA generation from homologous loci? Our results
imply two mechanisms that cooperate and work at differ-
ent steps of piRNA biogenesis. In the cytoplasm, trans-
generationally inherited piRNAs activate processing of
complementary transcripts by the ping-pong amplification
loop, as evidenced by a dramatic increase in piRNAs
generated by the ping-pong processing upon MD of cognate
piRNAs (Fig. 2C).

In the ping-pong processing, initial piRNAs guide
generation of secondary piRNAs from complementary
sequences. Previously, it was proposed that the ping-pong
cycle requires two types of piRNA precursors: cluster
transcripts and transcripts from active transposons pro-
vided in trans (Aravin et al. 2007a; Brennecke et al. 2007).

uni-directional

Our results indicate that the ping-pong cycle can be
activated by inherited piRNAs derived from the very
same locus, provided that it is bidirectionally transcribed.
Importantly, with the exception of one locus, all major
piRNA clusters in the D. melanogaster germline are
transcribed from both genomic strands, providing an
abundant source of complementary transcripts to be used
by the ping-pong process.

The major players in ping-pong processing in Drosoph-
ila are two Piwi proteins, AUB and AGO3, while the third
Piwi protein, PIWI itself, is not involved in this process
(Fig. 2C; Supplemental Fig. S2; Brennecke et al. 2007).
AUB and AGO3 colocalize in cytoplasmic nuage gran-
ules, where the ping-pong processing is believed to take
place (Brennecke et al. 2007). Therefore, the effect of
inherited piRNAs on ping-pong processing impacts a late
step of piRNA biogenesis after piRNA precursor tran-
scripts are exported to the cytoplasm.

Although enhancing the ping-pong processing is clearly
an important mechanism by which transgenerationally
inherited piRNAs boost piRNA biogenesis, it cannot
explain all of our observations, suggesting the existence
of another mechanism. We found that maternal piRNAs
are also required for the biogenesis of PIWI-associated
PiRNAs, although those are not generated by ping-pong
processing (Fig. 2B,C). Using several genetic systems, we
showed that inheritance of piRNAs leads to an increase of
the H3K9me3 mark on regions homologous to the piRNAs.
Importantly, acquisition of the H3K9me3 mark by geno-
mic regions that did not previously produce piRNAs
triggered piRNA generation in two transgenic systems
(Figs. 1, 2). In contrast, the absence of inherited piRNAs led
to a decreased H3K9me3 signal on homologous regions
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and a concomitant decrease of the corresponding piRNAs
(Figs. 1, 2). These results suggest that modification of the
chromatin structure of homologous genomic regions is the
other mechanism by which transgenerationally inherited
PiRNAs turn on piRNA biogenesis in the progeny. Counter-
intuitively, we found that enrichment of the H3K9me3
mark, which is generally assumed to be repressive,
strongly correlates with enhanced piRNA biogenesis. In
agreement with our results, a previous study showed that
biogenesis of piRNAs from double-stranded clusters re-
quires Eggless/SETDBI, one of the methyltransferases re-
sponsible for installation of the H3K9me3 mark (Rangan
et al. 2011).

Our analysis of several transgenic piRNA clusters
revealed differences in the impact of inherited piRNAs
on the level of the H3K9me3 mark. The inherited
piRNAs seem indispensable to maintain high H3K9me3
signal on the transgenic T1 and BX2* loci (Fig. 1B,C).
However, the absence of maternal piRNAs leads to
a relatively mild decrease in H3K9me3 on the telomeric
piRNA cluster in the P1152 strain (Fig. 3A). These results
indicate that natural piRNA clusters are able to maintain
a certain level of the H3K9me3 mark in a piRNA-in-
dependent fashion. This is not unexpected, as natural
piRNA clusters are located close to heterochromatin,
which is known to have a high level of H3K9me3 signal.
In contrast, the T1 and BX2 transgenes are inserted in
a euchromatic site that is normally lacking this mark.
Overall, our data strongly support an essential role of the
H3K9me3 mark in piRNA generation. They further re-
veal that enrichment of this mark on regions that
generate piRNAs at least partially depends on the in-
heritance of homologous piRNAs from the previous
generation. Finally, acquisition of the H3K9me3 mark
by a naive locus as a result of exposure to homologous
PiRNAs strongly correlates with the initiation of de novo
primary piRNA biogenesis from such a locus. The exact
mechanism for piRNA-dependent deposition of the
H3K9me3 mark on piRNA regions remains to be eluci-
dated; however, recent studies suggest that it might occur
through recognition of nascent transcripts by the nuclear
PIWI/piRNA complex, which is known to be deposited by
the mother into the developing egg (Megosh et al. 2006;
Brennecke et al. 2008) and has been shown to install
H3K9me3 on its genomic targets (Kalmykova et al. 2005;
Sienski et al. 2012; Le Thomas et al. 2013; Rozhkov et al.
2013).

The proposal that inherited piRNAs trigger piRNA
biogenesis by changing the chromatin structure of homo-
logous sequences raises the question of how the piRNAs
distinguish a genuine transposon, a target that needs to be
silenced, from a piRNA cluster that needs to be activated.
Surprisingly, our results indicate that targeting by piRNAs
leads to simultaneous repression of the target and acti-
vation of piRNA biogenesis from the same sequence. We
found that targeting of a unique sequence by piRNAs
triggers accumulation of the H3K9me3 mark, a decrease
in target expression, and activation of piRNA biogenesis
(Figs. 2, 3). Importantly, the target-derived piRNAs are
not generated by the ping-pong mechanism (which would
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be a trivial explanation), as they are present in complex
with PIWI, which does not participate in ping-pong
processing. The similarity between transposon targets
and piRNA-producing regions is supported by recent
work that demonstrated that new transposon insertions
in euchromatin start to generate piRNAs; i.e., they are
becoming de novo piRNA clusters (Shpiz et al. 2014).
Indeed, careful consideration suggests that the require-
ment to “silence” a genuine transposon target versus
“activate’”” a piRNA cluster is a false dichotomy: If
nascent transcripts generated from piRNA target loci
are channeled into the piRNA processing machinery
instead of the standard mRNA processing pathway, the
transcript will be effectively silenced, since no full-length
mRNA will accumulate. The idea that the target of
piRNA repression becomes a source of new piRNAs
makes the distinction between piRNA clusters (source
of piRNAs) and targets obsolete. Furthermore, our results
expose a case in which the same genomic region is
“silenced” and “activated” at the same time, depending
on the exact output the researcher is looking at (genera-
tion of full-length mRNA or piRNAs). Similar phenom-
ena might be more widespread than previously suspected,
as studies in yeast suggest a very similar model in which
centromeric repeats are “silenced” and generate siRNAs
at the same time (Grewal and Jia 2007).

How can the high level of the allegedly repressive
H3K9me3 mark enhance piRNA biogenesis? Our results
show that the H3K9me3 mark provides a platform for the
binding of Rhino, a chromodomain protein that shows
specific enrichment over piRNA clusters (Fig. 4; Supple-
mental Fig. S5). As high levels of the H3K9me3 mark are
also present in other genomic regions, it is possible that
recognition of H3K9me3 is not sufficient for Rhino’s
stable binding and that it interacts with other proteins
to achieve its localization on chromatin of double-
stranded clusters. Rhino forms a complex with Cutoff,
a protein that is also required for piRNA biogenesis
(Supplemental Fig. S8; Pane et al. 2011). The H3K9me3
mark, Rhino, and Cutoff colocalize at double-stranded
piRNA clusters (Figs. 4A, 5A), and Cutoff is de-localized
from nuclear foci in rhino mutants (Pane et al. 2011),
suggesting that it is recruited to piRNA clusters through
its interaction with Rhino. Taken together, our results
suggest that Rhino and Cutoff, which were previously
shown to be indispensable for piRNA generation from
double-stranded piRNA clusters (Klattenhoff et al. 2009;
Pane et al. 2011), are recruited to cluster chromatin
through the H3K9me3 mark.

The exact molecular mechanism by which the Rhino/
Cutoff complex activates piRNA biogenesis in the nu-
cleus remains to be elucidated; however, two not neces-
sarily mutually exclusive hypotheses can be proposed.
First, Cutoff might bind and target nascent transcripts
generated from piRNA clusters to the piRNA processing
machinery instead of the normal pre-mRNA processing.
In support of this idea, we found that the association of
Cutoff with chromatin is RNA-dependent (Supplemental
Fig. S9). We showed previously that inserting intron-
containing heterologous gene sequences into piRNA
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clusters results in abundant piRNAs from both the exonic
and intronic sequences, indicating that normal splicing is
perturbed (Muerdter et al. 2012). According to the second
hypothesis, the Rhino/Cutoff complex might enhance
transcription of piRNA clusters, hence providing more
precursors for piRNA biogenesis. Indeed, the run-on exper-
iment showed that Rhino is required for efficient transcrip-
tion of dual-stranded piRNA clusters. Furthermore, in
agreement with an effect on transcription, we found that,
in the cutoff mutant, both siRNAs and piRNAs as well as
long RNAs are eliminated from double-stranded piRNA
clusters (Fig. 6A,B), arguing against a role of Cutoff exclusive
to piRNA processing.

The counterintuitive idea that the H3K9me3 mark
might enhance rather than suppress transcription through
binding of nonconventional epigenetic “readers” has in-
teresting parallels in yeast. In Schizosaccharomyces
pombe, H3K9 methylation induces binding of Swi6/HP1,
which then recruits the Jumonji protein Epel that pro-
motes nucleosome turnover, resulting in increased tran-
scription of heterochromatic repeats and generation of
siRNAs (Zofall and Grewal 2006; Grewal 2010). One
possible mechanism by which Cutoff might enhance
cluster transcription is by suppressing RNA polymerase
II (Pol II) termination. Indeed, transgenic insertions that
contain polyA cleavage/termination signals into piRNA
clusters generate piRNAs downstream from the polyA
signal, indicating that not only splicing but transcription
termination is also suppressed in piRNA clusters
(Muerdter et al. 2012). Ignoring transcription termination
signals is likely an important feature of piRNA clusters, as
otherwise, multiple signals within transposon sequences
present in the clusters would terminate transcription and
disrupt piRNA generation.

Overall, our data revealed that regions that produce
piRNAs in Drosophila germ cells are defined by the
epigenetic process of the transgenerational inheritance of
cognate small RNAs. We found that inherited piRNAs
trigger piRNA generation in the progeny by two mecha-
nisms that seem to work simultaneously and cooperate to
shape the final piRNA population (Fig. 7). In the nucleus,
inherited piRNAs mark genomic regions that will give rise
to new piRNAs and enhance early steps of piRNA bio-
genesis. In the cytoplasm, inherited piRNAs further trigger
the post-transcriptional processing of cluster transcripts
through the ping-pong amplification loop.

Materials and methods

Drosophila stocks

Strains T1 and BX2 were described in Dorer and Henikoff (1997)
and de Vanssay et al. (2012). The strain P-1152, which carries the
insertion of the P{lArB} construct in telomeric sequences of the X
chromosome (site 1A), was described in Roche and Rio (1998).
The strain BC69 that has the insertion of the P{A92} construct at
a euchromatic location on chromosome 2L (site 35B10-35C1) was
described in Lemaitre et al. (1993). Both stocks were a generous gift
from S. Ronsseray. The Rhino-GFP fly line (GFP-tagged Rhino driven
by the rhino promoter] was a generous gift from W. Theurkauff.
The Cutoff-EGFP fly line (Nanos-GAL4/UASp-Cutoff-GFP),
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Figure 7. A model for the role of transgenerationally inherited
piRNAs in determining piRNA biogenesis in the next generation.
The inherited piRNAs act in two ways: In the nucleus, piRNAs
mediate installment of the H3K9me3 mark over piRNA-pro-
ducing loci. An increased level of H3K9me3 is required for
recruitment of the Rhino/Cutoff complex. Cutoff might target
nascent transcripts to the piRNA processing machinery and/or
enhance transcription. In the cytoplasm, piRNAs initiate the
ping-pong amplification cycle, thereby boosting processing of
piRNA cluster transcripts into mature piRNAs.

PiRNA processing T

—

cuff*™2°, and cuff9%%” were a generous gift from T. Schupbach.
The Rhino-BioTAP flies were made by fusing the BioTAP tag
(Alekseyenko et al. 2014) to the C-terminal region of the rhino
gene under the UASp promoter. shRhino flies were obtained from
the Bloomington Stock Center (stocks 34071 and 35171) and
driven by Nos-Gal4 (stock 4937).

PIRNA isolation, immunoprecipitation of PIWI proteins,
and small RNA cloning

Immunoprecipitations of PIWI, AUB, and AGO3 proteins from
D. melanogaster ovaries were carried out using rabbit polyclonal
antisera directed against the N-terminal 14-16 amino acids
according to previously described procedures (Brennecke et al.
2007). Small RNAs from immunoprecipitates and total RNA
extracts were cloned as previously described in Brennecke et al.
(2007) and Aravin et al. (2008). Briefly, small RNAs within a 19-
to 29-nt window were isolated from 12% polyacrylamide gels. 3
and 5’ linkers were ligated, and products were reverse-tran-
scribed using SuperScript III (Invitrogen). Following PCR ampli-
fication, libraries were submitted for sequencing using the
Mlumina platform.

Analysis of the ping-pong processing

To determine the fraction of piRNAs that participate in ping-
pong pairs, we counted uniquely mapped piRNA reads that map
to opposite strands of each other and have a 10-base-pair (bp)
distance between their 5’ ends. To account for variable sequenc-
ing depth, we carried out the analysis by sampling reads to ~25%
of the read counts in the library with the fewest reads in a region
and repeating this 1000 times.

ChIP and ChIP-qPCR

ChIPs were carried out using commercially available antibodies
(anti-H3K9me3 [ab8898], anti-RNA Pol II [ab5408], and anti-GFP
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[DHSB-4C9]) (Sanchez et al. 2014). ChIPs for Rhino and Cutoff
were performed with anti-GFP antibodies on ovaries from trans-
genic animals expressing GFP-tagged proteins.

Prior to any ChIP experiment, 100 flies per immunoprecipita-
tion condition were put on yeast for 2-3 d before ovary dissec-
tions. Ovaries were fixed using paraformaldehyde (PFA) at a final
concentration of 1% and incubated for 10 min at room temper-
ature. Samples were quenched by directly adding glycine (finale
concentration 25 mM) for 5 min at room temperature and were
then washed three times in PBS. Ovaries were afterward slightly
dounced in Farnham buffer (5 mM HEPES at pH 8.0, 85 mM KCl,
0.5% NP-40/Igepal, protease inhibitor cocktail, 10 mM NaF,
0.2 mM Na3VO04) followed by strong douncing in RIPA buffer
(20 mM Tris at pH 7.4, 150 mM NaCl, 1% NP-40/Igepal, 0.5%
sodium deoxycholate, 0.1% SDS, protease inhibitor cocktail, 10
mM NaF, 0.2 mM Na3dVO4) prior to sonication. Sonication was
done using a Bioruptor from Diagenode on medium power for 20
cycles (30 sec on, 30 sec off). Samples were centrifuged, and
supernatant was collected and precleared for 2 h at 4°C using
Dynabeads Protein G (Invitrogen) beads. If RNase treatment was
required, half of the sample was incubated with 1 yL of 10 mg/mL
RNase A during preclearing, and all samples were incubated for 2 h
at room temperature. Meanwhile, in parallel, antibodies were
conjugated to Dynabeads Protein G for 2 h at 4°C also. Five
percent of precleared samples were saved for the Input fraction,
and the rest was then transferred to the antibody-conjugated beads
and incubated for 2 h at 4°C. Beads were then washed five times at
4°C using LiCl immunoprecipitation buffer (10 mM Tris at pH
7.5, 500 mM LiCl, 1% NP-40/Igepal, 1% sodium deoxycholate),
rinsed in TE, and finally resuspended in Proteinase K buffer (200
mM Tris at pH 7.4, 25 mM EDTA, 300 mM NaCL, 2% SDS) with
100 pg of Proteinase K. Samples were incubated for 3 h at 55°C and
then overnight at 65°C. DNA was then extracted following
standard phenol-chloroform extraction, and concentration was
measured by Qbit.

In the case of the Cutoff ChIP-seq, the experiment was per-
formed using an altered protocol: Ovaries were treated with 2 mg/
mL collagenase for 3 min at room temperature, washed once in
PBS, and then fixed using fresh EGS (Thermo Scientific, 21565)
solution (1.5 mg/mL final in PBS) for 30 min at room temperature.
PFA was then added to the solution to a final concentration of 1%
and incubated for 10 min at room temperature. Consecutive steps
were as previously described. H3K9me3 and Rhino ChIP-gPCR
experiments were performed on at least two biological replicates
with three technical replicates each. Cutoff ChIP-qPCR was
performed in two technical replicates. Values were normalized
to respective inputs and to a genomic region known to be enriched
in H3K9me3, Rhino, and Cutoff (chr2R: 2336913-2337023).
Cutoff ChIP-qPCR, including RNase treatment, was normalized
to respective inputs and to the control region RP49. For primers,
see Supplemental Table S2. Error bars represent the standard error
of the mean.

ChIP-seq and RNA-seq Iibrary construction and high-
throughput data analysis

ChIP-seq and RNA-seq library construction and sequencing
were carried out using standard protocols following the general
principles described by Johnson et al. (2007) and Mortazavi
et al. (2008), respectively. Libraries were sequenced on the
Illumina HiSeq 2000 (50-bp reads) platform. Data sets for
piRNAs were extracted from available Gene Expression
Omnibus (GEO) data (Kelleher et al. 2012): D. melanogaster,
SRX205641; D. simulans, SRX205642; and F1, SRX205643. The
resulting sequencing reads were mapped against the genome
using Bowtie 0.12.7 (Langmead et al. 2009) with the following
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settings: “-v O-best-strata,” retaining only uniquely mappable
reads with zero mismatches. Read mapping statistics for ChIP-
seq data sets processed this way are presented in Supplemental
Table S1. Data analysis was carried out using a combination of
publicly available software tools and custom-written python
scripts.

Rhino and Cutoff coimmunoprecipitation

Immunoprecipitation and Western blots were performed as pre-
viously described (Chen et al. 2007; Pane et al. 2011) on ovarian
extracts from transgenic flies expressing Rhino-BioTAP and
Cutoff-EGFP using anti-BioTAP antibody (Sigma, P1291) for
immunoprecipitating Rhino-BioTAP. Western blots were carried
out with anti-BioTAP antibody at 1:1000 and anti-GFP antibody
at 1:1000 dilution in 5% nonfat milk.

Cloning, expression, and purification of Rhino

The D. melanogaster Rhino chromodomain (19-85) was inserted
into the pETSumo expression vector (Invitrogen), which fuses
a hexa-His tag plus a yeast sumo tag at the N terminus to the
target protein. The plasmid was transformed into the Escher-
ichia coli BL21(DE3) strain (Stratagene). The cells were cultured
at 37°C until ODggp reached 0.8, and then the protein expression
was induced with 0.2 mM IPTG overnight at 18°C. The hexa-
His-Sumo tagged protein was purified using a HisTrap FF column
(GE Healthcare). The tag was cleaved by Ulpl protease and
further removed by a second-step HisTrap FF column (GE
Healthcare) purification. The target protein was further purified
by a Hiload Superdex G200 16/60 column (GE Healthcare).

Crystallization and diffraction data collection

The purified Rhino protein was concentrated to ~15 mg/mL in
a storage buffer of 150 mM NaCl, 20 mM Tris (pH 7.5), and 5 mM
DTT. Synthetic H3(1-15/K9me3 peptide was added at a threefold
excess molar ratio to Rhino chromodomain and incubated for 30
min at 4°C. Crystallization was conducted at 20°C using the
hanging drop vapor diffusion method by mixing 1 wL of protein
solution and 1 wL of reservoir solution (0.2 M ammonium nitrate,
20% PEG3350) and was equilibrated against 0.5 mL of reservoir
solution. The crystals were soaked into the reservoir solution
supplemented with 15% glycerol before being flash-cooled in
liquid nitrogen for diffraction data collection. The diffraction data
were collected at beamline 24-ID-E at the Argonne National
Laboratory, Chicago, and processed using the HKL2000 suite
(Otwinowski and Minor 1997). The statistics of the diffraction
data are summarized in Supplemental Table S4.

Structure determination and refinement

The structure of the Rhino chromodomain was solved using the
molecular replacement method as implemented in Phaser (McCoy
2007) using the structure of the HP1 chromodomain as the
search model (Protein Data Bank [PDB] ID: 1KNE). The model
building was carried out using Coot (Emsley et al. 2010), and the
structure refinement was conducted using Phenix (Adams et al.
2010). Throughout the refinement, a free R factor was calculated
using 5% randomly chosen reflections. The stereochemistry of
the structure model was analyzed using Procheck (Laskowski
et al. 1993). The structure of the Rhino-H3(1-15)K9me3 complex
was solved using the same protocol as the free-form structure. The
statistics of the refinement and the structure model are summa-
rized in Supplemental Table S4. All of the molecular graphics
were generated using Pymol (DeLano Scientific, LLC).
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All of the peptides, including H3(1-15), H3(1-15)K9mel,
H3(1-15)K9me2, and H3(1-15)K9me3, were purchased from Tufts
University Peptide Facility. Protein concentration was determined
by absorbance spectroscopy. The Rhino chromodomain (23-85)
was dialyzed against 25 mM sodium chloride, 20 mM Tris (pH 8.0),
and 2 mM b-mercaptoethanol. The peptide was dissolved in the
same buffer. ITC was conducted on a Microcal calorimeter ITC
200 instrument at 20°C. Binding curves were analyzed by non-
linear least-squares fitting of the data using Origin 7.0 software.

Nuclear run-on/GRO-seq

Nuclear run-on/GRO-seq experiments were performed on ovaries
of shRhino flies (Bloomington Stock Center, 3407) driven by Nos-
Gal4 (Bloomington Stock Center, 4937). Nos-Gal4 flies were used
as a control. The nuclear run-on procedure was carried out as
previously described (Shpiz et al. 2011) with slight modifications.
BrUTP (5'-bromouridine-5'-triphosphate; Sigma, B7166)-labeled
NRO-RNA was filtered through Illustra MicroSpin G25 columns
(27-5325-01) twice to remove unincorporated BrUTP. The NRO-
RNA was captured using the anti-BrdU antibody (Sigma, 032M
4753) for 1 h followed by incubation with Protein G beads
(Dynabeads, Invitrogen, 1003D) for 1 h. The immunoprecipitation
procedure was sequentially performed three times to yield highly
enriched BrUTP RNA. As a negative control, the same procedure
was performed on nonlabeled, total Drosophila ovary RNA. As
a quality control, RT-qPCR was performed on 10% of the purified
RNA with primers for Vasa, Rp49, and selected piRNA clusters.
Libraries were cloned with the NEBNext Ultra Directional RNA
library kit (E7420S) and sequenced on the Illumina HiSeq 2000
(50-bp reads) platform. Reads were mapped uniquely to the dm3
genome using Bowtie 0.12.7 (Langmead et al. 2009), allowing for
no mismatches. The number of reads from the respective
clusters are shown in Supplemental Table 5.

Accession codes

High-throughput sequencing data for ChIP-seq, RNA-seq, and
piRNA-seq experiments are available through GEO (accession
no. GSE59610). Coordinates and structure factors have been
deposited in the Research Collaboratory for Structural Bioinfor-
matics (RCSB) PDB with the accession codes 4QUC for Rhino
chromodomain in the free form and 4QUF for the Rhino
chromodomain-H3K9me3 complex.
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